
Dear reviewers:

Really appreciate your time to review our Chipmunk work. Hopefully this process can also bring
you some enjoyment when playing around our software.

At a really high level, we want to separate the artifact evaluation into three steps:

1. Run Domino compiler for all benchmarks' mutations (10 for each)
2. Run Chipmunk on all benchmarks' mutations using Banzai ALU
3. Run Chipmunk on all benchmarks themselves using Tofino ALU and test the result by

running P4 program in Tofino switch
The whole process may take around several hours to finish and we hope you can get some
interesting experience from this artifact evaluation process.

The following is about the details to reproduce our result reported in paper, the same content
will be also in the README file from different repos. In order to make life easier, most
experiments can be finished within one script, but if you want to know more details, please take
a look at my script or email me. Before doing any concrete work, I want to report the machine
we used to run our experiments. We use NYU crunchy machines
(https://www.courant.nyu.edu/webapps/content/systems/resources/computeservers) with Four
AMD Opteron 6272 (2.1 GHz) (64 cores) 256 GB memory and CentOS 7 operating system. But
the experiment will also work for the normal linux system Ubuntu 16.04.6 LTS (GNU/Linux
4.15.0-43-generic x86_64). The mac system may cause the result to be inconsistent because
of some randomness from program synthesis and mutation generation even if we fix the random
seed.

Dependencies : Important
1) Python 3.6.3

https://www.python.org/downloads/release/python-363/
2) Java
3) Antlr 4.7.2

https://www.antlr.org/download/antlr-4.7.2-complete.jar
 Installation guide available at Here

4) Sketch
https://people.csail.mit.edu/asolar/sketch-1.7.5.tar.gz
Installation guide available inside extracted sketch-1.7.5 directory in README. As
directed in README, Note: sketch needs to be added to PATH

5) Clang+llvm
https://releases.llvm.org/5.0.2/clang+llvm-5.0.2-x86_64-linux-gnu-ubuntu-
16.04.tar.xz
Extract it, its path will be used later while compiling domino

6) Banzai
https://github.com/packet-transactions/banzai

To install, run: ./autogen.sh && ./configure && sudo make install (Refer README)

7) Other library dependencies
git g++ (>=7.4) build-essential autotools-dev libncurses5-dev autoconf libtool and
zlib1g-dev automake (Use a package manager like macports or apt-get to get
them.)

8) Barefoot SDE 8.2.0 (Tested on this version)

Chipmunk Source Code:
Note1: Please download all the following repositories into one folder

1. Download chipmunk_experiments-tofino repo and follow the README file inside to
install
git clone https://github.com/chipmunk-project/chipmunk_experiments-tofino

2. Download domino-compiler repo and follow the README file inside to install

git clone https://github.com/chipmunk-project/domino-compiler

3. Download domino-examples repo and follow the README file inside to install
git clone https://github.com/chipmunk-project/domino-examples

4. Download chipmunk-tofino repo and follow the README file inside to install

git clone https://github.com/chipmunk-project/chipmunk-tofino

5. Download tofino-boilerplate repo inside the tofino switch
https://github.com/chipmunk-project/tofino-boilerplate

Part 1: Run Domino compiler for all benchmark’s mutations:
1. Go to domino-examples folder
2. Make sure sketch is added to PATH
3. Run the script

python3 run_all_domino_examples.py

4. Verify the resource usage and successful compilation rate

Part 2: Run Chipmunk on all benchmarks' mutations using Banzai
ALU
Because we use 64-cores powerful machines to run all the benchmarks, if you do not have
access to those machines, we provide an option to run simpler benchmarks that may finish
compilation quickly.

Full list: ['learn_filter.c', 'blue_increase.c', 'blue_decrease.c', 'stateful_fw.c', 'dns_ttl_change.c',
'flowlets.c', 'rcp.c', 'marple_new_flow.c', 'marple_tcp_nmo.c', 'sampling.c', 'stfq.c', 'conga.c',
'snap_heavy_hitter.c', 'spam_detection.c']

Simple list: ['rcp.c', 'marple_new_flow.c', 'marple_tcp_nmo.c', 'sampling.c', 'stfq.c', 'conga.c',
'snap_heavy_hitter.c', 'spam_detection.c']

1. Go to chipmunk_experiments-tofino folder
2. Run the script

2.1 part of simple example

python3 run_expr.py simple_part

2.2 all of simple examples (optional)

Python3 run_expr.py simple

2.3 all of complex examples (optional) take a really really long time

python3 run_expr.py complex

3. Verify the resources usage, compilation rate and compilation time. Because we use
parallel mode from SKETCH, so the compilation time may be varied.

Part 3: Run Chipmunk on all benchmarks themselves using
Tofino ALU and test the result by running P4 program in Tofino
switch
NOTE 1: Because we need to generate the program and verify it one by one, so this may
need a little bit manual work
NOTE 2: Based on our opinion, Tofino compiler may have a potential bug because it fails
to compile P4 program with code like “(((0))) - x”, so we may have to replace it by “- x”.

Program list: ['blue_increase.c', 'blue_decrease.c', 'dns_ttl_change.c', 'flowlets.c', 'rcp.c',
'marple_new_flow.c', 'marple_tcp_nmo.c', 'sampling.c', 'conga.c', 'snap_heavy_hitter.c']

1. Go to chipmunk_experiments-tofino folder
2. Run the script for each program individually, and follow the command line

instructions provided to copy the p4 program to the switch.
Important 1: You may need to remove (((0))) from the generated p4 program in
case the output prompts.
Important 2: Refer to step 3 to get the input values needed to run the generated p4
program in tofino.

python3 compile_with_tofino.py ../domino-
examples/domino_programs/sampling.c 1 3 3 10 2

python3 compile_with_tofino.py ../domino-
examples/domino_programs/marple_tcp_nmo.c 1 3 2 10 2

python3 compile_with_tofino.py ../domino-
examples/domino_programs/rcp.c 1 1 6 10 2

python3 compile_with_tofino.py ../domino-
examples/domino_programs/marple_new_flow.c 1 2 3 10 2

python3 compile_with_tofino.py ../domino-
examples/domino_programs/conga.c 2 1 3 10 2

python3 compile_with_tofino.py ../domino-
examples/domino_programs/snap_heavy_hitter.c 2 1 2 10 2

python3 compile_with_tofino.py ../domino-
examples/domino_programs/blue_increase.c 1 4 2 10 2

python3 compile_with_tofino.py ../domino-
examples/domino_programs/blue_decrease.c 1 4 2 10 2

python3 compile_with_tofino.py ../domino-
examples/domino_programs/dns_ttl_change.c 1 3 6 10 2

python3 compile_with_tofino.py ../domino-
examples/domino_programs/flowlets.c 1 3 5 10 2

3. For any benchmark, get the value by directly running C program in domino-example

folder

cd domino_in_c_lan

g++ <.c>

./a.out

4. To run the program in tofino, below are the commands inside the tofino switch :

cd ~/bf-sde-8.2.0

./p4_build.sh /tmp/autogen.p4

cd ~/tofino-boilerplate/CP

./run.sh + feeding the initial value

 Usage is below :

./run.sh field0 field1 field2 field3 field4
[reg_0_register_value_f0=x1 reg_0_register_value_f1=x2
reg_1_register_value_f0=y1 reg_1_register_value_f1=y2
reg_2_register_value_f0=z1 reg_2_register_value_f1=z2]

高翔宇�

高翔宇�
$SDE

If you have any questions, feel free to ping me by xg673@nyu.edu.
Thanks again for your time.

All members of the Chipmunk research group

